Can we render long texts as images and use a VLM to achieve 3–4× token compression, preserving accuracy while scaling a 128K context toward 1M-token workloads? A team of researchers from Zhipu AI release Glyph, an AI framework for scaling the context length through visual-text compression. It renders long textual sequences into images and processes…
		A team of Salesforce AI researchers introduced WALT (Web Agents that Learn Tools), a framework that reverse-engineers latent website functionality into reusable invocable tools. It reframes browser automation around callable tools rather than long chains of clicks. Agents then call operations such as search, filter, sort, post_comment, and create_listing. This reduces dependence on large language…
		A team of researchers from Meta Reality Labs and Carnegie Mellon University has introduced MapAnything, an end-to-end transformer architecture that directly regresses factored metric 3D scene geometry from images and optional sensor inputs. Released under Apache 2.0 with full training and benchmarking code, MapAnything advances beyond specialist pipelines by supporting over 12 distinct 3D vision…
		IBM has released Granite-Docling-258M, an open-source (Apache-2.0) vision-language model designed specifically for end-to-end document conversion. The model targets layout-faithful extraction—tables, code, equations, lists, captions, and reading order—emitting a structured, machine-readable representation rather than lossy Markdown. It is available on Hugging Face with a live demo and MLX build for Apple Silicon. 
What’s new compared to…
		In this tutorial, we explore advanced computer vision techniques using TorchVision’s v2 transforms, modern augmentation strategies, and powerful training enhancements. We walk through the process of building an augmentation pipeline, applying MixUp and CutMix, designing a modern CNN with attention, and implementing a robust training loop. By running everything seamlessly in Google Colab, we position…
		Computer vision moved fast in 2025: new multimodal backbones, larger open datasets, and tighter model–systems integration. Practitioners need sources that publish rigorously, link code and benchmarks, and track deployment patterns—not marketing posts. This list prioritizes primary research hubs, lab blogs, and production-oriented engineering outlets with consistent update cadence. Use it to monitor SOTA shifts, grab…
		How do you create 3D datasets to train AI for Robotics without expensive traditional approaches? A team of researchers from NVIDIA released “ViPE: Video Pose Engine for 3D Geometric Perception” bringing a key improvement for Spatial AI. It addresses the central, agonizing bottleneck that has constrained the field of 3D computer vision for years.  
ViPE…
		Introduction 
Understanding how the brain builds internal representations of the visual world is one of the most fascinating challenges in neuroscience. Over the past decade, deep learning has reshaped computer vision, producing neural networks that not only perform at human-level accuracy on recognition tasks but also seem to process information in ways that resemble our…
		Contrastive Language-Image Pre-training (CLIP) has become important for modern vision and multimodal models, enabling applications such as zero-shot image classification and serving as vision encoders in MLLMs. However, most CLIP variants, including Meta CLIP, are limited to English-only data curation, ignoring a significant amount of non-English content from the worldwide web. Scaling CLIP to include…
		In the domain of multimodal AI, instruction-based image editing models are transforming how users interact with visual content. Just released in August 2025 by Alibaba’s Qwen Team, Qwen-Image-Edit builds on the 20B-parameter Qwen-Image foundation to deliver advanced editing capabilities. This model excels in semantic editing (e.g., style transfer and novel view synthesis) and appearance editing…